

RN-003-1015001

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

February - 2019

Mathematics: Paper - 5(A)

(Mathematical Analysis - I & Abstract Algebra - I) (New Course)

Faculty Code: 003

Subject Code: 1015001

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) Figure to the right indicate full marks of the question.
- 1 (a) Answers the following questions:
 - (1) Define: Metric space.
 - (2) If (\mathbb{R}, d) is a discrete metric space, then find $N(e, \pi)$.
 - (3) If (\mathbb{R}, d) is a usual metric space, then find \mathbb{Z}' .
 - (4) Let $A = \left\{ \frac{1}{2} \middle| n \in \mathbb{N} \right\} \subset \mathbb{R}$. Find \overline{A} .
 - (b) Answer any **one** in brief:
 - (1) By an example show that : arbitrary union of closed sets may not be closed.
 - (2) By an example show that : arbitrary intersection of open sets may not be open.
 - (c) Answer any **one** in detail:
 - (1) Prove that if (X, d) is a metric space, then $|d(x, z) d(y, z)| \le d(x, y), \forall x, y, z \in X$
 - (2) Prove that : Any finite subset of a metric space is closed.
 - (d) Attempt any **one**:
 - (1) If (X, d) is a metric space, then show that $d_1: X \times X \to \mathbb{R}; d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)} \text{ is a bounded metric on } X.$
 - (2) Lex X be a metric space and $A, B \subset X$. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

1

RN-003-1015001]

ı

[Contd...

2

3

5

2 (a) Answers the following questions:

4

- (1) In usual notation define L(P, f).
- (2) Let $f(x) = x, x \in [0, 1]$ and $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of [0, 1]. Compute L(P, f).
- (3) True or False : If a bounded function *f* is monotonic, then it is *R*-integrable.
- (4) State First Mean Value Theorem of Integral Calculus.
- (b) Answer any one in brief:

2

- (1) If $f:[a,b] \to \mathbb{R}$ is a bounded and $P \in P[a,b]$, then show that $L(P,f) \le U(P,f)$.
- (2) If $f:[a,b] \to \mathbb{R}$ is a bounded and $P \in P[a,b]$, then show that L(P,-f) = -U(P,f).
- (c) Answer any one in detail:

3

- (1) Show that : $\lim_{x \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right] = \frac{3}{8}$
- (2) Using second definition prove that $\int_{1}^{2} (2x+1) dx = 4$.
- (d) Attempt any one:

5

- (1) Prove that : $\frac{1}{3\sqrt{2}} \le \int_0^1 \frac{x^2}{\sqrt{1+x^2}} \le \frac{1}{3}$.
- (2) Let $f:[0,1] \to \mathbb{R}$ be a function defined as

$$f(x) = \begin{cases} \frac{1}{2} & x \text{ is rational} \\ \frac{1}{3} & x \text{ is irrational} \end{cases}$$

Show that f is not R-integrable.

3 (a) Answers the following questions:

4

- (1) In usual notation define U(P, f).
- (2) Define: Norm of the partition.
- (3) Let * be defined as $a*b = \frac{ab}{100}$, $a, b \in \mathbb{Q}$. What is the identity for *?
- (4) Let G be a group and $x, y, z, w \in G$. Then $(x \ y \ z \ w)^{-1} = \underline{\hspace{1cm}}$.

(b) Answer any **one** in brief:

- 1
- (1) Express $\lim_{n\to\infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{3r}{n} 2 \right)$ as a definite integral.
- (2) In a group G prove that inverse of every element is unique.
- (c) Answer any one in detail:

3

2

- (1) Let G be a group $H \le G$ and $a \in G$. Show that aHa^{-1} is a subgroup of G.
- (2) If $f \in R[a, b]$ and $f(x) \ge 0 \ \forall x \in [a, b]$, then $\int_{a}^{b} f(x) dx \ge 0.$
- (d) Attempt any one:

5

(1) Show that:

$$\lim_{n \to \infty} \frac{1}{n} \left(e^{3/n} + e^{6/n} + \dots + e^{3n/n} \right) = \frac{1}{3} \left(e^3 - 1 \right)$$

- (2) Let G be a group and $H \le G$. For $x, y \in G$ define $x \equiv y \pmod{H} \Leftrightarrow x^{-1}y \in H$. Prove that \equiv is an equivalence relation on G. Also find cl(a) where $a \in G$.
- 4 (a) Answers the following questions:

4

- (1) Define: Group.
- (2) Define: Order of an element.
- (3) Express $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 1 & 5 & 4 & 2 & 7 \end{pmatrix} \in S_7$ as a product of disjoint cycles.
- (4) Let G be a group with identity e and $a \in G$. If $a^9 = e$, them list all possible orders of element a.
- (b) Answer any one in brief:

2

- (1) Let G be a group. If $a^2 = e$, $\forall a \in G$, then show that G is abelian.
- (2) Let G be a finite group and $a \in G$. Then show that $a^{O(G)} = e$
- (c) Answer any one in detail:

3

(1) Using Fermat's Theorem Show that : If p is an odd prime, then

$$1^{p-1} + 2^{p-1} + \dots + (p-1)^{p-1} \equiv (-1) \pmod{p}$$

- (2) Let G be a group. Show that if $(xy)^{-1} = x^{-1}y^{-1}$, $\forall x, y \in G$, then G is abelian.
- (d) Attempt any **one**:

5

- (1) Prove that : For $n \ge 3$, every $f \in A_n$ can be express as product of 3-cycle.
- (2) State and prove Euler's Theorem.
- **5** (a) Answers the following questions:

4

- (1) Define: Transposition.
- (2) Define: Center of the group.
- (3) Check whether $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 1 & 4 & 6 & 5 & 2 \end{pmatrix} \in S_7$ is odd or even ?
- (4) Let G be a group, $a, b \in G$ and O(a) = 6. If $c = bab^{-1}$, then $O(c) = \underline{\hspace{1cm}}$.
- (b) Answer any **one** in brief:

2

- (1) Let G be an abelian group. Show that $H = \{a \in G \mid O(a) \text{ is finite}\}$ is a subgroup of G.
- (2) Let G be a group and $a \in G$. Then show that $N(a) \leq G$.
- (c) Answer any one in detail:

3

- (1) Find the remainder obtained on dividing 5^{352} by 14.
- (2) Prove that product of an even and an odd permutation is an odd permutation.
- (d) Attempt any one:

5

- (1) State and prove Cayley's Theorem.
- (2) If G is a group such that $(ab)^n = a^n b^n$, for three consecutive integers n, then show that G is abelian.
